74. 搜索二维矩阵
编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
每行中的整数从左到右按升序排列。 每行的第一个整数大于前一行的最后一个整数。
示例 1:
输入:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 3
输出: true
示例 2:
输入:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 13
输出: false
解法一
二分查找
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int m = matrix.length;
if (m == 0) return false;
int n = matrix[0].length;
int left = 0, right = m * n - 1;
while (left <= right) {
int mid = (left + right) / 2;
int midElement = matrix[mid / n][ mid % n];
if (target == midElement) return true;
else {
if(target < midElement) right = mid - 1;
else left = mid + 1;
}
}
return false;
}
}
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix.length == 0) return false;
int row = 0, col = matrix[0].length - 1;
while (row < matrix.length && col >= 0) {
if (matrix[row][col] < target) row++;
else if (matrix[row][col] > target) col--;
else return true;
}
return false;
}
}