99. 恢复二叉搜索树
二叉搜索树中的两个节点被错误地交换。
请在不改变其结构的情况下,恢复这棵树。
示例 1:
输入: [1,3,null,null,2]
1
/
3
\
2
输出: [3,1,null,null,2]
3
/
1
\
2
示例 2:
输入: [3,1,4,null,null,2]
3
/ \
1 4
/
2
输出: [2,1,4,null,null,3]
2
/ \
1 4
/
3
进阶:
- 使用 O(n) 空间复杂度的解法很容易实现。
- 你能想出一个只使用常数空间的解决方案吗?
解法一
先做中序遍历,得到一个排序数组 查找排序数组中的元素,找到被交换的值 遍历树,交换元素
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private void inOrder(TreeNode root, List<Integer> nums) {
if (root == null) return;
inOrder(root.left, nums);
nums.add(root.val);
inOrder(root.right, nums);
}
private int[] findTwoSwapped(List<Integer> nums) {
int x = -1, y = -1;
for (int i = 0; i < nums.size() - 1; i++) {
if (nums.get(i+1) < nums.get(i)) {
y = nums.get(i+1);
if (x == -1) x = nums.get(i);
else break;
}
}
return new int[]{x, y};
}
private void recover(TreeNode root, int count, int[] swapped) {
if (root != null) {
if (root.val == swapped[0] || root.val == swapped[1]) {
root.val = root.val == swapped[0] ? swapped[1] : swapped[0];
if (--count == 0) return;
}
recover(root.left, count, swapped);
recover(root.right, count, swapped);
}
}
public void recoverTree(TreeNode root) {
List<Integer> nums = new ArrayList<>();
inOrder(root, nums);
int[] swapped = findTwoSwapped(nums);
recover(root, 2, swapped);
}
}
解法二
先写一个 Morris travesal
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public void recoverTree(TreeNode root) {
while(root != null) {
if (root.left != null) {
TreeNode temp = root.left;
while(temp.right != null && temp.right != root) temp = temp.right;
if (temp.right == null) {
temp.right = root;
root = root.left;
} else {
temp.right = null;
// visit root.val
root = root.right;
}
} else {
// visit root.val
root = root.right;
}
}
}
}
加入逻辑
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public void recoverTree(TreeNode root) {
TreeNode first = null, second = null;
TreeNode prev = new TreeNode(Integer.MIN_VALUE);
while(root != null) {
if (root.left != null) {
TreeNode temp = root.left;
while(temp.right != null && temp.right != root) temp = temp.right;
if (temp.right == null) {
temp.right = root;
root = root.left;
} else {
temp.right = null;
// visit root.val
if (prev.val > root.val && first == null) {
first = prev;
}
if (prev.val > root.val && first != null) {
second = root;
}
root = root.right;
}
} else {
// visit root.val
if (prev.val > root.val && first == null) {
first = prev;
}
if (prev.val > root.val && first != null) {
second = root;
}
root = root.right;
}
}
if (first !=null && second != null) {
int temp = first.val;
first.val = second.val;
second.val = temp;
}
}
}