146. LRU缓存机制


官方链接

https://leetcode-cn.com/problems/lru-cache/

运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。

获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。 写入数据 put(key, value) - 如果密钥不存在,则写入其数据值。当缓存容量达到上限时,它应该在写入新数据之前删除最近最少使用的数据值,从而为新的数据值留出空间。

进阶:

你是否可以在 O(1) 时间复杂度内完成这两种操作?

示例:

LRUCache cache = new LRUCache( 2 /* 缓存容量 */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1);       // 返回  1
cache.put(3, 3);    // 该操作会使得密钥 2 作废
cache.get(2);       // 返回 -1 (未找到)
cache.put(4, 4);    // 该操作会使得密钥 1 作废
cache.get(1);       // 返回 -1 (未找到)
cache.get(3);       // 返回  3
cache.get(4);       // 返回  4

解法一

class LRUCache {

    class Entry {
        int key;
        int value;
        Entry pre;
        Entry next;
        Entry(int key, int value) {
            this.key = key;
            this.value = value;
        }
    } 
    private final int capacity;
    private HashMap<Integer, Entry> m;
    Entry head;
    Entry tail;

    public LRUCache(int capacity) {
        this.capacity = capacity;
        m = new HashMap<Integer, Entry>((int)(capacity / 0.75 + 1), 0.75f);
        head = new Entry(0, 0);
        tail = new Entry(0, 0);
        head.next = tail;
        tail.pre = head;
    }

    public int get(int key) {
        if(!m.containsKey(key)) return -1;

        Entry entry = m.get(key);
        popToTail(entry);
        return entry.value;
    }

    public void put(int key, int value) {
        if(m.containsKey(key)) {
            Entry entry = m.get(key);
            entry.value = value;
            popToTail(entry);
            return;
        }
        Entry entry = new Entry(key, value);
        if(m.size() >= capacity) {
            Entry first = removeFirst();
            m.remove(first.key);
        }
        addToTail(entry);
        m.put(key, entry);
    }

    private void popToTail(Entry entry) {
        Entry pre = entry.pre;
        Entry next = entry.next;

        pre.next = next;
        next.pre = pre;

        Entry last = tail.pre;
        last.next = entry;
        entry.pre = last;

        entry.next = tail;
        tail.pre = entry;
    }

    private void addToTail(Entry entry) {
        Entry last = tail.pre;
        last.next = entry;
        entry.pre = last;

        entry.next = tail;
        tail.pre = entry;
    }
    private Entry removeFirst() {
        Entry first = head.next;
        Entry second = first.next;
        head.next = second;
        second.pre = head;

        return first;
    }
}

/**
 * Your LRUCache object will be instantiated and called as such:
 * LRUCache obj = new LRUCache(capacity);
 * int param_1 = obj.get(key);
 * obj.put(key,value);
 */

python3.6+ 实现了 pep-0468:

from collections import OrderedDict

class LRUCache(OrderedDict):

    def __init__(self, capacity: int):
        self.capacity = capacity

    def get(self, key: int) -> int:
        if key not in self:
            return -1
        self.move_to_end(key)
        return self[key]

    def put(self, key: int, value: int) -> None:
        if key in self:
            self.move_to_end(key)
        self[key] = value
        if len(self) > self.capacity:
            self.popitem(last=False)

# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)
class LRUCache:

    def __init__(self, capacity: int):
        self.dic = collections.OrderedDict()
        self.remain = capacity

    def get(self, key: int) -> int:
        if key not in self.dic:
            return -1
        v = self.dic.pop(key)
        self.dic[key] = v # key as the newest one
        return v

    def put(self, key: int, value: int) -> None:
        if key in self.dic:
            self.dic.pop(key)
        else:
            if self.remain > 0:
                self.remain -= 1
            else: # self.dic is full
                self.dic.popitem(last = False)
        self.dic[key] = value

# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)

解法二 LinkedHashMap

class LRUCache {

    private LinkedHashMap<Integer, Integer> map;
    private final int capacity;

    public LRUCache(final int capacity) {
        this.capacity = capacity;
        map = new LinkedHashMap<Integer, Integer>(capacity, 0.75f, true) {
            @Override
            protected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest) {
                return this.size() > capacity;
            }
        };
    }

    public int get(int key) {
        return map.getOrDefault(key, -1);
    }

    public void put(int key, int value) {
        map.put(key, value);
    }
}

/**
 * Your LRUCache object will be instantiated and called as such:
 * LRUCache obj = new LRUCache(capacity);
 * int param_1 = obj.get(key);
 * obj.put(key,value);
 */