官方链接
https://leetcode-cn.com/problems/n-th-tribonacci-number
泰波那契序列 Tn 定义如下:
T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2
给你整数 n
,请返回第 n 个泰波那契数 Tn 的值。
示例 1:
输入:n = 4
输出:4
解释:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4
示例 2:
输入:n = 25
输出:1389537
提示:
0 <= n <= 37
- 答案保证是一个 32 位整数,即
answer <= 2^31 - 1。
解法一
class Solution {
public int tribonacci(int n) {
if (n <= 1) return n;
if (n == 2) return 1;
int r0 = 0;
int r1 = 1;
int r2 = 1;
int r3 = 0;
for (int i = 3; i <= n; i++) {
r3 = r0 + r1 + r2;
r0 = r1;
r1 = r2;
r2 = r3;
}
return r3;
}
}
解法二
class Solution {
Map<Integer, Integer> mem = new HashMap<>();
public int tribonacci(int n) {
if (n <= 1) return n;
if (n == 2) return 1;
int r0, r1, r2;
if (mem.containsKey(n-1)) {
r0 = mem.get(n-1);
} else {
r0 = tribonacci(n-1);
mem.put(n-1, r0);
}
if (mem.containsKey(n-2)) {
r1 = mem.get(n-2);
} else {
r1 = tribonacci(n-2);
mem.put(n-2, r1);
}
if (mem.containsKey(n-3)) {
r2 = mem.get(n-3);
} else {
r2 = tribonacci(n-3);
mem.put(n-3, r2);
}
return r0+r1+r2;
}
}